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ABSTRACT
Multimodal emotion recognition aims to identify human emotions
from text, audio, and visual modalities. Previous methods either
explore correlations between different modalities or design sophis-
ticated fusion strategies. However, the serious problem is that the
distribution gap and information redundancy often exist across
heterogeneous modalities, resulting in learned multimodal repre-
sentations that may be unrefined. Motivated by these observations,
we propose a Feature-Disentangled Multimodal Emotion Recog-
nition (FDMER) method, which learns the common and private
feature representations for each modality. Specifically, we design
the common and private encoders to project each modality into
modality-invariant and modality-specific subspaces, respectively.
The modality-invariant subspace aims to explore the commonality
among different modalities and reduce the distribution gap suffi-
ciently. The modality-specific subspaces attempt to enhance the
diversity and capture the unique characteristics of each modal-
ity. After that, a modality discriminator is introduced to guide the
parameter learning of the common and private encoders in an adver-
sarial manner. We achieve the modality consistency and disparity
constraints by designing tailored losses for the above subspaces.
Furthermore, we present a cross-modal attention fusion module to
learn adaptive weights for obtaining effective multimodal represen-
tations. The final representation is used for different downstream
tasks. Experimental results show that the FDMER outperforms the
state-of-the-art methods on two multimodal emotion recognition
benchmarks. Moreover, we further verify the effectiveness of our
model via experiments on the multimodal humor detection task.
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1 INTRODUCTION
Emotion plays a role in human communication. Recently, Multi-
modal Emotion Recognition (MER) has become an active research
area with essential applications in various fields, such as human-
computer interaction [5], intelligent healthcare [13], and robotics
[32]. Human expressions of emotions are usually a mixture of nat-
ural language, facial gestures, and acoustic behaviors. Different
modalities can provide rich information to understand human emo-
tions and intents. Benefiting from the excellent performance of
deep learning technologies in processing diverse signals [8, 21, 26–
28, 46, 54], various models have been developed to extract emotion-
related information from multimodal sequences, such as convo-
lution neural networks [20], recurrent neural networks [22, 41],
transformers [1], and their variants [30, 42]. The mainstream re-
search focuses on two aspects: 1) learning correlations between
elements from different modalities to obtain refined modality se-
mantics [25, 30, 43], and 2) designing sophisticated fusion strategies
to produce effective representations [44, 48, 51, 56]. Nevertheless,
the inherent heterogeneity across modalities often introduces infor-
mation redundancy and distribution gap, increasing the difficulty
of multimodal representation learning and feature fusion. In this
case, most previous methods treat the representation of each modal-
ity in a holistic learning manner, causing the learned multimodal
representations that may be unrefined and redundant.
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Recent works have provided some first insights into learning
distinct multimodal representations. Liang et al. [25] attempt to
learn reliable cross-modal interactions over modality-invariant sub-
space where the distribution is bridged. However, their method
neglects the fact that different modalities reveal the unique charac-
teristic of emotions from different perspectives. Hazarika et al. [11]
use similarity loss and difference loss to explore consistency and
complementarity between multiple modalities. It is a sub-optimal
solution because utilizing only the simple constraints fail to guar-
antee that the learned representations are perfectly projected to the
desired subspaces. Wu et al. [50] propose a text-centric framework
for learning shared and private semantics in acoustic and visual
modalities. Unfortunately, their framework is trained in stages and
is not generalizable, 𝑖 .𝑒 ., it depends on the specific modality.

Motivated by the above observations, we propose a Feature-
Disentangled Multimodal Emotion Recognition (FDMER) method
to deal with modality heterogeneity by learning two distinct repre-
sentations for each modality. The first is the common representa-
tion, which aims to project all modalities into a modality-invariant
shared subspace with aligned distributions. Our FDMER can capture
the commonality among modalities regarding suggested emotions
and reduce the modality gap in this subspace. The second is the
private representation, which aims to provide a modality-specific
subspace for each modality. In these subspaces, our FDMER can
learn the unique characteristics of different modalities and elimi-
nate redundant information. We design the common and private
encoders to achieve the feature disentanglement described above.
In addition, the proposed consistency and disparity constraints are
utilized to guarantee consistency in the common representations
and diversity in the private representations, respectively. To further
guarantee that the different representations are projected perfectly
into the corresponding subspaces, a modality discriminator is intro-
duced to guide the parameter learning of the common and private
encoders. For alleviating the modality heterogeneity challenge, we
employ a spherical modality discriminative loss to enhance the
intra-class compactness and inter-class discrepancy for the hidden
representations and parameters of the modality discriminator in a
hyper-sphere. After that, we propose a cross-modal attention fusion
module based on adaptive attention weights to effectively fuse the
distinct representations. The refined multimodal representation
eventually serves downstream tasks.

The main contributions can be summarized as follows:

• We propose FDMER, a novel multimodal emotion recog-
nition method based on feature disentanglement. The FD-
MER tackles heterogeneity gap by learning the common
and private representations across multiple modalities in the
modality-invariant and -specific subspaces, respectively.

• We present a Cross-Modal Attention Fusion (CMAF) module
to fuse multimodal representations effectively. The CMAF
module adaptively assigns weights to different representa-
tions to highlight the stronger ones and suppress the weaker
ones based on their importance.

• Our FDMER outperforms previous state-of-the-art methods
on three standard multimodal benchmarks. Comprehensive

experiments demonstrate that our method can clearly cap-
ture distinct multimodal representations and depict the com-
monality and diversity among multiple modalities.

2 RELATEDWORK
2.1 Multimodal Emotion Recognition
Emotion recognition is a research hotspot that has attracted wide-
spread attention in the multimedia community. Unlike conventional
works [2, 39] that use only isolated modality (𝑒.𝑔., text or audio),
multimodal emotion recognition aims to combine information from
multiple sources to improve the understanding and perception of
human emotions. Previous multimodal methods have contributed
to leveraging the complementary information across modalities
[29, 31, 42, 44, 48, 51, 53]. For instance, Zadeh et al. [51] propose
a tensor fusion to explicitly capture uni-modal, bi-modal, and tri-
modal interactions. Liu et al. [29] utilize the low-rank tensors to
accelerate the fusion process. Mai et al. [31] propose a graph fusion
network tomodel the interactions between different modalities. The
aforementioned methods are aggregation-based fusion paradigms,
and the modality gap heavily hurts multimodal fusion. To bridge
the modality gap, some recent works [25, 30, 43] attempt to achieve
potential adaption from one modality to another based on the cross-
modal attention. However, they tend to perform fusion into a joint
embedding space, which neglects the diversity of each modality.

2.2 Disentangled Representation Learning
Early work on disentangled representation learning is mostly based
on auto-encoders [4] and generative adversarial networks [35].
Chen et al. [6] introduce joint bayesian formulation to decompose
a face representation into three parts, including intrinsic difference,
transformation difference, and noise. Besides, the FactorVAE [24]
is proposed to disentangle by encouraging the representation to
be factorial and independent across the dimensions. Recently, dis-
entangled representation learning has been increasingly applied
in cross-modal tasks. For example, Wu et al. [49] propose a disen-
tangled variational representation method for heterogeneous face
matching by aligning the correlation between different modality
variations. Guo et al. [17] present a cross-modal retrieval method
based on deep mutual information estimation that disentangles the
exclusive modality information from the shared representations. In
comparison, we extend the one-to-one disentangled paradigm to
the multimodal pattern in an adversarial manner.

3 APPROACH
3.1 Model Overview
In this section, we describe the details of the proposed Feature-
Disentangled Multimodal Emotion Recognition (FDMER) method.
The overall structure of the FDMER is illustrated in Figure 1.We con-
sider three primarymodalities that express emotion: text, audio, and
visual modalities. Their corresponding sequences are represented as
𝑿𝑡 ∈ R𝐿𝑡×𝑑𝑡 , 𝑿𝑎 ∈ R𝐿𝑎×𝑑𝑎 , and 𝑿 𝑣 ∈ R𝐿𝑣×𝑑𝑣 , respectively, where
𝐿( ·) is the sequence length and 𝑑 ( ·) is the embedding dimension.
Our goal is to extract distinct multimodal representations from het-
erogeneous modalities for performing effective multimodal fusion.
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Figure 1: The overall structure of the proposed FDMER. For themultimodal sequences𝑿𝑡 ,𝑿𝑎 and𝑿 𝑣 , wefirst progressively enrich
the low-level features through the respective transformers to obtain reinforced representations 𝒁𝑡 , 𝒁𝑎 , and 𝒁 𝑣 . Immediately,
a common encoder and three private encoders are employed to extract the common representations 𝑪 {𝑡,𝑎,𝑣 } and the private
representations 𝑷 {𝑡,𝑎,𝑣 } of different modalities, respectively. On the one hand, we propose the consistency and disparity
losses to constrain the projections of modality-invariant and -specific subspaces, respectively. On the other hand, a modality
discriminator is presented to supervise and guide the learning of the distinct representations. Eventually, we introduce a
cross-modal attention fusion module to fuse multiple representations and make predictions via the fully connected layers.

The core idea is to learn the common and private feature represen-
tations by projecting each modality into modality-invariant and
modality-specific subspaces. To this end, we design the consistency
and disparity constraints to enhance the commonality across the
common representations and reduce the redundancy among the
private representations, respectively (introduced in Section 3.3).
Moreover, a modality discriminator is introduced to supervise the
learning of the common and private representations explicitly, 𝑖 .𝑒 .,
reducing the distribution gap among modalities in the modality-
invariant subspace while learning the unique characteristics of each
modality in the modality-specific subspaces. After that, we propose
a cross-modal attention fusion module to achieve information in-
teraction and fusion between different representations (introduced
in Section 3.4). Eventually, the fused multimodal representation is
used to perform downstream tasks.

3.2 Feature Extraction
To explore long-range contextual information, we utilize 𝑛𝑡 -layer,
𝑛𝑎-layer, 𝑛𝑣-layer transformer encoder [45] to enrich the text fea-
tures, audio features, and visual features separately. The trans-
former encoder consists of a multi-head self-attention module and
a position-wise feed-forward layer, where residual connections are
adopted, followed by layer normalization. Please refer to [45] for
more details. The extracted features are denoted as 𝒁𝑚 :

𝒁𝑚 = Transformer(𝑿𝑚 ;𝜃𝑡𝑟𝑎𝑛𝑠𝑚 ) ∈ R𝐿𝑚×𝑑𝑚 , (1)

where𝑚 ∈ {𝑡, 𝑎, 𝑣} and 𝜃𝑡𝑟𝑎𝑛𝑠𝑚 are the learnable parameters. Subse-
quently, we obtain the refined features of each modality in a fixed
dimension as 𝒁𝑚 ∈ R𝑑𝑘 through the fully connected layers.

3.3 Representation Learning
Common and Private Representations. Although the feature

extractors based on temporal models can capture the long-range
contextual dependencies of multimodal sequences, they cannot
address feature redundancy due to the modality gap [56]. In addi-
tion, the divide-and-conquer processing pattern suffers from the
heterogeneous nature among different modalities. Motivated by
the above observations, we propose the common and private en-
coders to embed the pre-extracted features from each modality
into modality-invariant and modality-specific subspaces, respec-
tively. The nature of this disentangled representation learning is to
leverage the common and private representations to capture the
consistency and specificity of heterogeneous modalities, respec-
tively. More formally, both the common encoder I(·;𝜃I ) and the
private encoders S𝑚 (·;𝜃𝑚) are implemented as two-layer percep-
trons with the activation function of GeLU [19], where𝑚 ∈ {𝑡, 𝑎, 𝑣}.
The common and private representations can be formulated as:

𝑪𝑡 = I(𝒁𝑡 ;𝜃I ), 𝑪𝑎 = I(𝒁𝑎 ;𝜃I ), 𝑪𝑣 = I(𝒁 𝑣 ;𝜃I ), (2)
𝑷𝑡 = S𝑡 (𝒁𝑡 ;𝜃𝑡 ), 𝑷𝑎 = S𝑎 (𝒁𝑎 ;𝜃𝑎), 𝑷 𝑣 = S𝑣 (𝒁 𝑣 ;𝜃𝑣), (3)

where 𝑪 {𝑡,𝑎,𝑣 } , 𝑷 {𝑡,𝑎,𝑣 } ∈ R𝑑𝑘 . The common encoder I(·;𝜃I )
shares the parameters 𝜃I across all modalities, and the private
encoders S𝑚 (·;𝜃𝑚) learn the parameters 𝜃𝑚 for each modality.

Consistency Constraint. Inspired by [47], we apply the tailored
constraints to disentangled representation learning for multiple
modalities. For the common representations, we introduce a con-
sistency constraint to strengthen the commonality among different
modalities. Concretely, we use 𝐿2-normalization to normalize the
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representations 𝑪𝑚 of the common encoder output as 𝑪𝑛𝑜𝑟𝑚 . The
normalized matrices can be utilized to depict the similarity as 𝑺𝑚 :

𝑺𝑚 = 𝑪𝑚 · 𝑪𝑛𝑜𝑟
𝑇

𝑚 . (4)

The consistency means that the two similarity matrices should be
similar, which results in the following constraint:

L𝑐𝑜𝑛 =
1
3

∑︁
(𝑚1,𝑚2)

∥ 𝑺𝑚1 − 𝑺𝑚2 ∥2𝐹 , (5)

where (𝑚1,𝑚2) ∈ {(𝑡, 𝑎), (𝑡, 𝑣), (𝑎, 𝑣)}, and ∥ · ∥2
𝐹
is the squared

Frobenius norm.

Disparity Constraint. To ensure that the private representa-
tions model the different aspects of multimodal data and reduce
information redundancy across different modalities, we employ the
Hilbert-Schmidt Independence Criterion (HSIC) [40] to effectively
measure the independence between the private representations. If
the independence between the two representations is high, their
discrepancy is significant. Benefiting from its fast convergence, the
HSIC has been applied to several machine learning tasks [16, 34].
More formally, the HSIC constraint between any two private repre-
sentations is defined as:

HSIC(𝑷𝑚1 , 𝑷𝑚2 ) = (𝑛 − 1)−2𝑇𝑟 (𝑼𝑲𝑚1𝑼𝑲𝑚2 ), (6)

where 𝑲𝑚1 and 𝑲𝑚1 are the Gram matrices with 𝑘𝑚1,𝑖 𝑗 = 𝑘𝑚1

(𝒑𝑖𝑚1 ,𝒑
𝑗
𝑚1 ) and 𝑘𝑚2,𝑖 𝑗 = 𝑘𝑚2 (𝒑𝑖𝑚2 ,𝒑

𝑗
𝑚2 ). 𝑼 = 𝑰 − (1/𝑛)𝑒𝑒𝑇 , where

𝑰 is an identity matrix and 𝑒 is an all-one column vector. In practice,
we use the inner product kernel function [47] for 𝑲𝑚1 and 𝑲𝑚2 .
In this case, we perform the HSIC constraint between the private
representations of each pair of modalities, and the overall disparity
loss is expressed as:

L𝑑𝑖𝑠 =
1
3

∑︁
(𝑚1,𝑚2)

HSIC(𝑷𝑚1 , 𝑷𝑚2 ), (7)

where (𝑚1,𝑚2) ∈ {(𝑡, 𝑎), (𝑡, 𝑣), (𝑎, 𝑣)}.

Adversarial Learning. Although the consistency and dispar-
ity loss can encourage the common and private encoders to pro-
duce different representations, they do not guarantee that the com-
mon representations belong to a latent subspace shared across
modalities and that the private representations explicitly reflect the
unique characteristics of each modality. As an example of learning
modality-invariant subspace, previous state-of-the-art work [11]
focuses on using the Central Moment Discrepancy (CMD) metric to
align common cross-modal features on a shared subspace. However,
such the simple constraint is supervised only by a task-specific pat-
tern, resulting in the produced representations that are potentially
impure and the projected subspace that is potentially mixed.

Inspired by generative adversarial network [15], we design a
modality discriminator to identify modality labels and guide pa-
rameter learning of common and private encoders in an adversarial
learning manner. To guarantee the purity of the common and pri-
vate representations, the modality discriminator D(·;𝜃D ) maps
the input into a probability distribution and estimates the modality
from which the representation comes. The formula is defined as:

D(𝒉;𝜃D ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑾𝑇
D · F (𝒉)), (8)

where 𝑾D ∈ R𝑑×3 and 𝒉 ∈ R𝑑𝑘 is the input representation of
the modality discriminator, which can be either the output 𝑪𝑚 of
the common encoder or the output 𝑷𝑚 of the private encoders.
F (𝒉) =𝑾 F · 𝒉 + 𝒃F , where𝑾 F ∈ R𝑑×𝑑𝑘 and 𝒃F ∈ R𝑑×1.

As a multi-class classifier, it is straightforward to learn the modal-
ity discriminator with cross-entropy loss. However, the modality
heterogeneity leads to the conventional cross-entropy that fails to
explicitly optimize intra-class similarity and inter-class diversity,
limiting the discriminative power of the modality discriminator. To
address this issue, we firstly normalize the hidden representations
�̂� = F (𝒉) ∈ R𝑑 and each column of 𝑾D with 𝐿2-normalization.
The normalization step on the representations and weights makes
the predictions only depend on the angle between the representa-
tion and the weight. The learned representations are distributed on
a hyper-sphere. In this case, we introduce an additive angular mar-
gin loss [10] to enhance the intra-class compactness and inter-class
discrepancy for the modality discriminator:

L𝑎𝑚 = −𝑙𝑜𝑔 𝑒𝛼𝑐𝑜𝑠 (𝜃𝑦𝑚+𝜏)

𝑒𝛼𝑐𝑜𝑠 (𝜃𝑦𝑚+𝜏) +∑𝑀
𝑚=1,𝑚≠𝑦𝑚

𝑒𝛼𝑐𝑜𝑠 (𝜃𝑚)
, (9)

where 𝜃𝑦𝑚 = 𝑎𝑟𝑐𝑐𝑜𝑠 (𝑾𝑇
𝑦𝑚

·�̂�) and 𝜃𝑚 = 𝑎𝑟𝑐𝑐𝑜𝑠 (𝑾𝑇
𝑚 ·�̂�).𝑦𝑚 denotes

the ground-truth modality label. 𝑾𝑦𝑚 ∈ R𝑑 denotes the 𝑦𝑚-th
column of the weight matrix𝑾D . Similarly,𝑾𝑚 ∈ R𝑑 denotes the
𝑚-th column of the weight matrix 𝑾D . 𝛼 is a scale factor and 𝜏

is a margin factor. Based on the above improvement, the common
representations 𝑪𝑚 are encoded in a modality-invariant subspace,
which tends to be in the same distribution. The common adversarial
loss is expressed as:

L𝑎𝑚𝑖 =
1
𝑛

𝑛∑︁
𝑖=1

∑︁
𝑚∈{𝑡,𝑎,𝑣 }

L𝑎𝑚 (𝑪𝑚, 𝑦𝑚), (10)

where L𝑎𝑚𝑖 is trained with gradient reversal layer [14] that keeps
the input fixed during forward propagation and multiply the gra-
dient by −1 during the backpropagation. Furthermore, the private
representations 𝑷𝑚 are embedded in the modality-specific sub-
spaces, which tend to be in different distributions. Therefore, the
modality discriminator is encouraged to distinguish the source of
the modality. The private adversarial loss is expressed as:

L𝑎𝑚𝑠 =
1
𝑛

𝑛∑︁
𝑖=1

∑︁
𝑚∈{𝑡,𝑎,𝑣 }

L𝑎𝑚 (𝑷𝑚, 𝑦𝑚) . (11)

3.4 Cross-Modal Attention Fusion Module
Different aspects of the representations have different importance
for the final prediction. Simply concatenating them ignores modal-
ity interactions, which might introduce redundant information and
lead to a sub-optimal problem [55]. As shown in the right half of
Figure 1, to fully use consistent and complementary information
in the refined common and private representations, we propose a
novel Cross-Modal Attention Fusion (CMAF) module to achieve
information interaction and knowledge exchange between different
representations comprehensively. The CMAF module consists of a
cross-modal interaction phase and an adaptive attention phase. We
describe the details of each below.
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Cross-Modal Interaction Phase (Phase 1). Assuming that
there is already a strong commonality between the refined com-
mon representations, we merge 𝑪𝑚 from different modalities into
the overall representation as 𝑪 =

∑
𝑚∈{𝑡,𝑎,𝑣 } 𝑪𝑚 ∈ R𝑑𝑘 . Then, we

concatenate all the representations as 𝑭 𝑠𝑜 = [𝑪, 𝑷𝑡 , 𝑷𝑎, 𝑷 𝑣] ∈ R4𝑑𝑘 .
The core strategy of this phase is to explore the potential adap-
tation process from the integrated source representation 𝑭 𝑠𝑜 to
the target representations 𝑭 𝑡𝑎 ∈ {𝑪, 𝑷𝑡 , 𝑷𝑎, 𝑷 𝑣} via cross-modal
attention. Each target representation is effectively reinforced and
improved in sufficient cross-modal interaction. Inspired by the self-
attention mechanism [45], we first embed 𝑭 𝑡𝑎 into a space denoted
as G𝑡𝑎 = 𝐿𝑁 (𝑭 𝑡𝑎)𝑾 G𝑡𝑎

, while embedding 𝑭 𝑠𝑜 into two spaces
denoted as Q𝑠𝑜 = 𝐿𝑁 (𝑭 𝑠𝑜 )𝑾Q𝑠𝑜

and U𝑠𝑜 = 𝐿𝑁 (𝑭 𝑠𝑜 )𝑾U𝑠𝑜
,

respectively.𝑾 G𝑡𝑎
∈ R𝑑𝑘×𝑑𝑘 , {𝑾Q𝑠𝑜

,𝑾U𝑠𝑜
} ∈ R4𝑑𝑘×4𝑑𝑘 are em-

bedding weights, and 𝐿𝑁 means layer normalization. Then, the
cross-modal interaction is defined as follows:

𝑭 𝑠𝑜→𝑡𝑎 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (G𝑡𝑎Q𝑇
𝑠𝑜 )U𝑠𝑜 ∈ R𝑑𝑘 . (12)

Immediately, the forward computation is expressed as:

𝒀 𝑡𝑎 = 𝐿𝑁 (𝑭 𝑡𝑎) + 𝑭 𝑠𝑜→𝑡𝑎, (13)
𝒀 𝑡𝑎 = 𝑓𝛿 (𝐿𝑁 (𝒀 𝑡𝑎)) + 𝒀 𝑡𝑎, (14)

where 𝑓𝛿 (·) is the feed-forward layers parametrized by 𝛿 , and 𝒀 𝑡𝑎 ∈
{𝒀𝑐 , 𝒀 𝑡 , 𝒀𝑎, 𝒀 𝑣} ∈ R𝑑𝑘 .

Adaptive Attention Phase (Phase 2). This phase introduces an
adaptive attention mechanism to assign dynamic weights for each
reinforced representation based on its importance. More formally,
we use one shared attention vector 𝒒 ∈ R𝑑𝑘×1 to get the attention
values 𝜇𝑡𝑎 as follows:

𝜇𝑡𝑎 = 𝒒𝑇 · 𝑡𝑎𝑛ℎ(𝑾𝑡𝑎 · 𝒀 𝑡𝑎 + 𝒃𝑡𝑎), (15)

where 𝑾𝑡𝑎 ∈ R𝑑𝑘×𝑑𝑘 and 𝒃𝑡𝑎 ∈ R𝑑𝑘×1. Then the attention val-
ues 𝜇𝑡𝑎 are normalized with softmax function to obtain the final
weights:

𝜓𝑡𝑎 =
𝑒𝑥𝑝 (𝜇𝑡𝑎)∑

𝑡𝑎∈{𝑐,𝑡,𝑎,𝑣 } 𝑒𝑥𝑝 (𝜇𝑡𝑎)
. (16)

A large𝜓𝑡𝑎 implies the corresponding representation is important.
We obtain the final representation 𝒀 𝑓 𝑖𝑛 ∈ R𝑑𝑘 by weighted sum-
mation:

𝒀 𝑓 𝑖𝑛 =
∑︁

𝑡𝑎∈{𝑐,𝑡,𝑎,𝑣 }
𝜓𝑡𝑎 ⊙ 𝒀 𝑡𝑎 . (17)

Eventually, the 𝒀 𝑓 𝑖𝑛 passes through the fully connected layers to
perform downstream tasks.

3.5 Objective Optimization
For the classification task, we employ the standard cross-entropy
loss as L𝑡𝑎𝑠𝑘 = − 1

𝑛

∑𝑛
𝑖=1 𝑦𝑖 · 𝑙𝑜𝑔𝑦𝑖 . For the regression task, we use

the mean squared error loss as L𝑡𝑎𝑠𝑘 = 1
𝑛

∑𝑛
𝑖=1 ∥ 𝑦𝑖 −𝑦𝑖 ∥22, where

𝑦𝑖 is the ground truth and 𝑛 is the number of samples in a batch.
Combining the task loss L𝑡𝑎𝑠𝑘 , the constraint losses L𝑐𝑜𝑛,L𝑑𝑖𝑠 ,
the common adversarial loss L𝑎𝑚𝑖 , and the private adversarial loss
L𝑎𝑚𝑠 , the final objective function is computed as:

L𝑎𝑙𝑙 = L𝑡𝑎𝑠𝑘 + 𝛽 (L𝑎𝑚𝑖 + L𝑎𝑚𝑠 ) + 𝛾 (L𝑐𝑜𝑛 + L𝑑𝑖𝑠 ), (18)

where 𝛽 and 𝛾 are the trade-off parameters.

4 EXPERIMENTS
4.1 Benchmarks and Evaluation Metrics
We conduct comprehensive experiments on two standard multi-
modal emotion recognition benchmarks and a multimodal humor
detection benchmark. These benchmarks provide word-aligned
multimodal signals for each sample.

CMU-MOSI. CMU-MOSI [53] is a human multimodal dataset
containing 2,199 short monologue video clips. The standard par-
titioning of the dataset is 1,284 samples in the training set, 229
in the validation set, and 686 in the testing set. The acoustic and
visual features are extracted at a sampling rate of 12.5 and 15 Hz,
respectively. Each multimodal sample has a sentiment score that
ranges from -3 to 3 . As in the previous works [38, 43, 44], the model
performance is evaluated by the 7-class accuracy (𝐴𝑐𝑐7), the binary
accuracy (𝐴𝑐𝑐2), mean absolute error (𝑀𝐴𝐸), the correlation of the
model’s prediction with human (𝐶𝑜𝑟𝑟 ), and the 𝐹1 score.

CMU-MOSEI. CMU-MOSEI [52] is a dataset that contains 22,856
samples of movie review video clips from YouTube. Its predeter-
mined data split includes 16,326 training samples, 1,871 validation
samples, and 4,659 testing samples. The acoustic and visual features
are extracted at a sampling rate of 20 and 15 Hz, respectively. The
samples are also labeled with the sentiment scores ranging from -3
to 3. The same metrics are employed as in the above setting.

UR_FUNNY. UR_FUNNY [18] is a dataset that contains 16,514
samples of multimodal utterances from TED talks. The standard
partitioning of the dataset is 10,598 samples in the training set,
2,626 in the validation set, and 3,290 in the testing set. Each target
utterance is labeled with a binary label for humor/non-humor in-
stance. It also provides related context for each target utterance.
For the binary classification, we report the binary accuracy (𝐴𝑐𝑐2).

4.2 Implementation Details
Feature Embedding. Most previous methods [25, 30, 44] have

obtained the textual features through Glove embedding [37]. How-
ever, benefiting from the excellent performance of the BERT model
[12], several recent works [11, 42] have been BERT-based. We pro-
vide the results using Glove and BERT for a comprehensive and fair
comparison. Specifically, we convert the transcripts of video into
pre-trained Glove word embedding with a 300-dimensional vector
while using the BERT-base-uncased pre-trained model to obtain
a 768-dimensional hidden state. For the MOSI & MOSEI, we use
Facet [23] to indicate 35 facial action units, recording facial muscle
movement to represent emotions. For the UR_FUNNY, we use the
OpenFace [3] to extract 75-dimensional features related to the facial
expressions. Moreover, the COVAREP toolkit [9] is used to extract
low-level acoustic features, where the dimension on the MOSI &
MOSEI is 74 and on the UR_FUNNY is 81. The features include
12 Mel-frequency cepstral coefficients (MFCCs), voiced/unvoiced
segmenting features, glottal source parameters, etc.

Experimental Setup. All models are built on the Pytorch tool-
box [36] with four Nvidia Tesla V100 GPUs. The number of trans-
former encoder layers for text, audio and visual are {𝑛𝑡 = 5, 𝑛𝑎 =

4, 𝑛𝑣 = 4}. For the MOSI, MOSEI and UR_FUNNY benchmarks, the
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Table 1: Comparison on the CMU-MOSI benchmark.

Model 𝐴𝑐𝑐7 ↑ 𝐴𝑐𝑐2 ↑ 𝐹1 ↑ 𝑀𝐴𝐸 ↓ 𝐶𝑜𝑟𝑟 ↑
Glove-based

TFN [51] 32.1 73.9 73.4 0.970 0.633
LMF [29] 32.8 76.4 75.7 0.912 0.668

RAVEN [48] 33.2 78.0 76.6 0.915 0.691
MCTN [38] 35.6 79.3 79.1 0.909 0.676
MFM [44] 36.2 78.1 78.1 0.951 0.662
MulT [43] 40.0 83.0 82.8 0.871 0.698
TCSP [50] - 80.9 81.0 0.908 0.710
PMR [30] 40.6 83.6 83.4 - -

FDMER (ours) 42.1 84.2 83.9 0.845 0.732

BERT-based

TFN [51] 34.9 80.8 80.7 0.901 0.698
LMF [29] 33.2 82.5 82.4 0.917 0.695
MFM [44] 35.4 81.7 81.6 0.877 0.706
ICCN [42] 39.0 83.0 83.0 0.860 0.710
MISA [11] 42.3 83.4 83.6 0.783 0.761

FDMER (ours) 44.1 84.6 84.7 0.724 0.788

Table 2: Comparison on the CMU-MOSEI benchmark.

Model 𝐴𝑐𝑐7 ↑ 𝐴𝑐𝑐2 ↑ 𝐹1 ↑ 𝑀𝐴𝐸 ↓ 𝐶𝑜𝑟𝑟 ↑
Glove-based

Graph-MFN [53] 45.0 76.9 77.0 0.710 0.540
RAVEN [48] 50.0 79.1 79.5 0.614 0.662
MCTN [38] 49.6 79.8 80.6 0.609 0.670
MulT [43] 51.8 82.5 82.3 0.580 0.703
TCSP [50] - 82.8 82.7 0.576 0.715
PMR [30] 52.5 83.3 82.6 - -

FDMER (ours) 53.8 83.9 83.8 0.568 0.736

BERT-based

TFN [51] 50.2 82.5 82.1 0.593 0.700
LMF [29] 48.0 82.0 82.1 0.623 0.677
MFM [44] 51.3 84.4 84.3 0.568 0.717
ICCN [42] 51.6 84.2 84.2 0.565 0.713
MISA [11] 52.2 85.5 85.3 0.555 0.756

FDMER (ours) 54.1 86.1 85.8 0.536 0.773

batch sizes and epochs are {64, 16, 32} and {120, 100, 60}, respec-
tively. The Adam optimizer is adopted for network optimization
with an initial learning rate of {1𝑒−3, 1𝑒−3, 2𝑒−3}. The trade-off pa-
rameters 𝛽 and𝛾 are set to {2𝑒−2, 3𝑒−2, 2𝑒−2} and {2𝑒−2, 4𝑒−2, 3𝑒−2},
respectively. The hidden dimension 𝑑𝑘 is set to 256 and the output
dimension 𝑑 of �̂� is 128. The margin factor 𝜏 and scale factor 𝛼 of
the angular margin loss in Eq. (9) are set to 0.5 and 72. In practice,
all the hyper-parameters are determined via the validation set.

4.3 Comparison with State-of-the-Art Methods
Model Zoo. We compare our model with the state-of-the-art

(SOTA) works, including the Glove-based mehtods: TFN [51], LMF
[29], Graph-MFN [53], RAVEN [48], MCTN [38], MFM [44], MulT
[43], TCSP [50], PMR [30], and the BERT-based methods: ICCN
[42], MISA [11]. Note that the results of some works [29, 44, 51]
based on BERT come from [42].

Table 3: Comparison on the UR_FUNNY benchmark.

Model Context Target 𝐴𝑐𝑐2 ↑
Glove-based

C-MFN [18] ✓ 58.45
C-MFN [18] ✓ 64.47
TFN [51] ✓ 64.71
LMF [29] ✓ 65.16

C-MFN [18] ✓ ✓ 65.23
MISA [11] ✓ 68.60

FDMER (ours) ✓ 70.55

BERT-based

LMF [29] ✓ 67.53
TFN [51] ✓ 68.57
MISA [11] ✓ 70.61

FDMER (ours) ✓ 71.87

Multimodal Emotion Recognition. Comparative results on
the CMU-MOSI and CMU-MOSEI benchmarks are reported in Ta-
bles 1 and 2, respectively. We have the following observations. Our
method significantly outperforms the previous SOTA methods on
all metrics for both benchmarks. Compared to the recent PMR [30],
which is based on complex cross-modal interactions, the proposed
FDMER learns effective multimodal representations with a simple
structure in the perspective of feature disentanglement. Compared
to the MISA [11], which also learns different subspace represen-
tations for multiple modalities, our method demonstrates the ra-
tionality and effectiveness of using an adversarial manner to learn
modality-invariant and modality-specific subspaces with superior
results. Furthermore, we observe a significant performance im-
provement of the FDMER using BERT to extract low-level features
compared to Glove-based embedding. This observation indicates
the advantages of using BERT to extract textual features.

Multimodal Humor Detection. To further verify the applica-
bility of the FDMER, comparative experiments are conducted on
the UR_FUNNY benchmark. Since humor detection is sensitive to
heterogeneous representations of different modalities [18], the best
results presented by our method in Table 3 show the superiority of
the proposed multimodal framework in learning distinct represen-
tations. It is worth noting that our Glove-based variant achieves
comparable performance to the BERT-based MISA [11].

4.4 Ablation Studies
We perform thorough ablation studies on all benchmarks to un-
derstand the necessity of the different components in the FDMER.
Table 4 shows the results with the following observations.

Importance of Modality. Firstly, we remove a modality sepa-
rately to explore the performance of the bi-modal FDMER. There
is a significant drop in the model’s performance when the text
modality is removed, indicating that the text modality dominates
the multimodal emotion recognition (MER) and multimodal hu-
mor detection (MHD) tasks. A reasonable explanation is that the
acoustic and visual features contain more noisy and redundant
information than the textual features, limiting the model’s perfor-
mance [7]. Furthermore, the consistently worse performance of the
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Figure 2: Visualization of the common and private representations in the testing set on three benchmarks. 𝛽 = 0, 𝛾 = 0 denotes
without adversarial and constraint losses, and vice versa. The blue, brown, and red colors represent text, audio, and visual
modalities, respectively. The light colors correspond to common parts, while dark colors correspond to private parts.

Table 4: Results of ablation studies on three benchmarks.

Model CMU-MOSI CMU-MOSEI UR_FUNNY
𝑀𝐴𝐸 ↓ 𝐶𝑜𝑟𝑟 ↑ 𝑀𝐴𝐸 ↓ 𝐶𝑜𝑟𝑟 ↑ 𝐴𝑐𝑐2 ↑

FDMER 0.845 0.732 0.568 0.736 70.55

Importance of Modality

w/o Text 1.275 0.345 0.896 0.378 57.58
w/o Audio 0.883 0.726 0.604 0.727 70.43
w/o Visual 0.925 0.714 0.639 0.713 69.81

Importance of Regularization

w/o L𝑎𝑚𝑖 + L𝑎𝑚𝑠 0.872 0.718 0.590 0.715 68.36
w/o L𝑐𝑜𝑛 0.867 0.723 0.577 0.728 69.87
w/o L𝑑𝑖𝑠 0.854 0.728 0.571 0.731 70.28

Cross-Entropy Loss 0.852 0.725 0.582 0.724 68.95

Importance of Representations

w/o Common 0.868 0.720 0.575 0.724 68.31
w/o Private 0.885 0.714 0.582 0.712 69.27

Non-Disentangled 0.862 0.725 0.571 0.727 69.68

Different Fusion Strategies

w/o CMAF 0.871 0.712 0.606 0.710 67.33
w/o Phase 1 0.864 0.724 0.582 0.726 68.41
w/o Phase 2 0.855 0.728 0.570 0.729 69.75
Addition 0.869 0.715 0.607 0.718 67.85

Multiplication 0.854 0.727 0.579 0.726 68.96

bi-modal FDMER compared to the tri-modal FDMER suggests that
each modality provides an indispensable contribution.

Importance of Regularization. We remove the proposed losses
separately to verify the role played by the different regularizations.
When there is no adversarial loss (L𝑎𝑚𝑖 + L𝑎𝑚𝑠 ), the model learns
distinct multimodal representations that rely on the constraint
losses and do not involve the modality discriminator. The worst
performance demonstrates the importance of the adversarial man-
ner in disentangled representation learning. Meanwhile, we ob-
serve that both the consistency constraint L𝑐𝑜𝑛 and the disparity
constraint L𝑑𝑖𝑠 improve the model’s performance. Moreover, we
replace the adversarial loss with the Cross-Entropy loss (CE-loss)
to explore its effectiveness. As shown in Table 4, the CE-loss causes
a significant performance drop on each benchmark. The result is in-
evitable because the traditional CE-loss cannot overcome modality
heterogeneity and capture the inter-class discrepancy in this case.

Importance of Representations. To prove the effectiveness of
the different representations, we first remove the common or private
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Figure 3: Visualization of the adversarial loss, constraint loss
and overall loss during the training process. Similar trends
are also observed on the CMU-MOSI benchmark.

representations separately to experiments. Specifically, we keep the
representation learning process but use only partial representations
in the fusion and prediction phases. The decreased results reveal
that both representations learned are essential and meaningful.
Interestingly, the private representations are more expressive in
the MER task. Conversely, the common representations provide a
significant contribution to the MHD task. In addition, we conduct a
version that does not learn the distinct subspaces, 𝑖 .𝑒 ., the extracted
features from the transformers are used directly for fusion.We show
that the model without feature disentanglement is slightly better
than those containing only common or private representations,
revealing the learning limitations in a partial subspace.

Different Fusion Strategies. Finally, we explore the effect of
different fusion strategies. The feature fusion is performed with the
simple concatenation when the CMAF module is removed. In this
case, the poor results prove that our fusion strategy is indispensable.
When one phase of the CMAF module is removed separately, both
decreased results suggest that it is beneficial to consider cross-
modal interactions and dynamic weights in multimodal fusion.
Furthermore, our strategy remains competitive when compared to
additive fusion and advanced multiplicative fusion [33].

4.5 Visualization Results
Visualization of Adversarial Representations. Understand-

ing the subspace distributions of the different representations is
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Figure 4: (a) Distributions of the common and private representations from different modalities on the CMU-MOSI benchmark.
For modality𝑚 ∈ {𝑡, 𝑎, 𝑣}, [𝑃 (𝑡 |𝑪𝑚), 𝑃 (𝑎 |𝑪𝑚), 𝑃 (𝑣 |𝑪𝑚)] = D(𝑪𝑚 ;𝜃D ), [𝑃 (𝑡 |𝑷𝑚), 𝑃 (𝑎 |𝑷𝑚), 𝑃 (𝑣 |𝑷𝑚)] = D(𝑷𝑚 ;𝜃D ). (b) The attention
distributions from the cross-modal attention fusion module in the testing set on the three benchmarks.

essential. To this end, we visualize the common and private repre-
sentations 𝑪 {𝑡,𝑎,𝑣 } and 𝑷 {𝑡,𝑎,𝑣 } learned without or with the adver-
sarial training and constraint losses on all benchmarks in Figure 2.
When 𝛽 = 0, 𝛾 = 0, the distributions of 𝑪 {𝑡,𝑎,𝑣 } and 𝑷 {𝑡,𝑎,𝑣 } some-
times overlap, and the common representations are not learned.
Contrarily, when 𝛽 ≠ 0, 𝛾 ≠ 0, the distributions of 𝑪 {𝑡,𝑎,𝑣 } are
blended together and gradually blurred, where adversarial training
effectively aligns distributions of different modalities andminimizes
the modality gap. Meanwhile, each modality-specific subspace is
separable, where the disparity constraint punishes redundant latent
representations. The above observations prove that our method
captures the commonality and specificity of different modalities.

Regularization Trends. The losses {L𝑎𝑚𝑖 ,L𝑎𝑚𝑠 ,L𝑐𝑜𝑛,L𝑑𝑖𝑠 }
act as measures to evaluate the ability of the model to learn the dis-
tinct representations. In Figure 3, the constraint loss (L𝑐𝑜𝑛 + L𝑑𝑖𝑠 )
and overall loss L𝑎𝑙𝑙 decrease almost monotonously and converge
smoothly, while the adversarial loss (L𝑎𝑚𝑖 + L𝑎𝑚𝑠 ) gradually sta-
bilizes after the vibration. The above observations prove that the
model is indeed learning the representations as designed.

Probability Distributions from Modality Discriminator. To
further understand the effect of adversarial learning, we visualize
the probabilities generated by themodality discriminator during the
adversarial process in Figure 4.(a). For each modality𝑚, the proba-
bilities of the common representations 𝑃 (𝑡 |𝑪𝑚), 𝑃 (𝑎 |𝑪𝑚), 𝑃 (𝑣 |𝑪𝑚)
are centered around 0.33, which is hard to differentiate the source
of commonmodalities. Contrarily, taking text modality for example,
𝑃 (𝑡 |𝑷𝑚) is higher than 𝑃 (𝑎 |𝑷𝑚) and 𝑃 (𝑣 |𝑷𝑚) by a large margin,
leading to increasingly the private representations.

Analysis of Attention Distributions. In Figure 4.(b), we con-
duct the box plots to analyze the attention distributions in the
testing set on all benchmarks. For CMU-MOSI and CMU-MOSEI

benchmarks, we note that the attention values of the private rep-
resentations are usually larger than the values of the common
representations, and the private representation of text modality
has the largest weights. This implies that the information in the
modality-specific subspace is more important than in the modality-
invariant subspace in the MER task. Conversely, for the UR_FUNNY
benchmark, we find that the attention values of the common repre-
sentations are generally larger than those of the private representa-
tions. This means that the information in the modality-invariant
subspace facilitates a better understanding of humor. The above
observations demonstrate that our CMAF module can adaptively
assign larger attention values to meaningful representations.

5 CONCLUSION
In this paper, we propose the Feature-Disentangled Multimodal
Emotion Recognition (FDMER) method to tackle modality hetero-
geneity by projecting each modality into modality-invariant and
modality-specific subspaces. Our FDMER elegantly refines the com-
mon and private representations of feature disentanglement via the
tailored constraints and adversarial learning strategy. Furthermore,
the novel cross-modal attention fusion module provides new in-
sight into fusing multimodal representations. Experimental results
demonstrate the superiority of our method. It is worth noting that
the FDMER can be expanded to various multimodal application
scenarios to facilitate the development of the communities.
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